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Impact Cratering

Dominant geologic process for solids in solar system

Types of impact craters:
• Simple

– Diameter < 3 km on Earth, < 15 km on moon
– Floor consists of breccia
– Meteor Crater (Arizona)

• Complex
– Diameter > 3 km on Earth, > 20 km on moon
– Central peaks (collapsed bowl-shaped crater)
– Floor has highly shocked and melted debris, melt pools sometimes
– Flynn Creek Crater (Tennessee)

• Multiring basins
– Diameter 100s to 1000s of km
– Multiple concentric circular scarps
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Stages of Impact Cratering

1. Contact and compression:
transfer of energy and
momentum, shock waves

2. Excavation: target material
vaporized or ejected from
crater, creating ejecta blanket

3. Modification: debris flows
down toward center of crater
(crater collapse)

Image from
http://www.meteorimpactonearth.com/mechanics.html.
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174 Known Impact Structures on Earth

Image courtesy of University of New Brunswick Planetary and Space Science Center Earth Impact Database
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Impacts Vary by Frequency and Energy

Image courtesy of LPL
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Components of Hydrocode

Lagrangian forms of conservation of momentum (1), mass (2),
energy(3):

ρDu
Dt

= −∇P (1)

Dρ
Dt

+ ρ∇ · u = 0 (2)

dE
dt

+ P
dV
dt

= 0, (3)

D: Lagrangian differential
(
∂
∂t + u · ∇

)
EOS: relates pressure, density, internal energy

Constitutive model: stress tensor as a function of strain, strain rate
effects, internal energy, damage
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Hydrocode Methods and Approaches

Discretization Methods:
finite-difference, finite element,
Smooth Particle Hydrodynamics
(SPH)

Approaches: Eulerian,
Lagrangian,
Arbitrary-Lagrangian-Eulerian
(ALE)

Image from
http://appliedmechanics.asmedigitalcollection.asme.org/
article.aspx?articleid=1414433
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Solid Mechanics and Damage
• Strength: ability to resist

changing shape
• Strain: measure of

deformation

• Stress: forces that cause
deformation

• Elastic and plastic properties

Damage as an on/off switch

Image from
http://gamingrockson.blogspot.com/2012/09/top-5-worst-

ways-to-die-in-super-mario.html

Damage Accumulates

Image from
https://i.ytimg.com/vi/AyYXWS61zEc/hqdefault.jpg
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Why Use FLAG to Model Impacts?

FLAG: A Big ASC Code
• Hydrodynamics code developed and maintained by LANL
• Arbitrary Lagrangian-Eulerian (ALE)
• Finite volume (conservative)
• Variety of Equations of State (EOS) and constitutive models

Verification and Validation Problems
• Verification: 1-km diameter Al-6061 sphere impacting Al-6061

target at 5 km/s and 20 km/s
• Validation: 2-mm diameter glass sphere impacting water target

at 4.64 km/s
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Verification: 2D Strengthless

1D Analytic FLAG† Pierazzo, et al. Mean‡ Location
Solution relative error relative error
5 km/s

58.725 GPa 55.77 GPa 40.4 GPa 200 m into target
-5.15% -33.3%

58.725 GPa 59.58 GPa – impact point
1.46%

20 km/s
506.25 GPa 407.99 GPa 379.0 GPa 685 m into target

-19.41% -27.50%
506.25 492.63 GPa – impact point

-2.69%

FLAG results had lower errors than previously published results when comparing
pressure at the same target location.
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Verification: 2D Strengthless

s

(a) (b)
Figure 6.3: (a) Stages of impact cratering in 2D FLAG simulation of Al-6061 projectile (brown) impacting Al-6061 target
(green) at 5 km/s, zoomed to show detail. (b) Pressure wave of 2D Flag simulation of Al-Al 5 km/s verification problem
0.161265 seconds after impact, zoomed to show detail.
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Verification: 2D Strength
Impact Velocity: 5 km/s

Strength Model Maximum Pressure Deviation from 1D Analytic
Strengthless 59.58 GPa 1.46%

Perfect Plasticity 57.96 GPa -1.30%
Linear Hardening 57.96 GPa -1.30%

Johnson-Cook 57.86 GPa -1.47%
Steinberg-Guinan 57.86 GPa -1.47%

Preston-Tonks-Wallace 57.84 GPa -1.51%

Impact Velocity: 20 km/s
Strength Model Maximum Pressure Deviation from 1D Analytic

Strengthless 492.63 GPa -2.69%
Perfect Plasticity 483.90 GPa -4.41%
Linear Hardening 483.90 GPa -4.41%

Johnson-Cook 483.91 GPa -4.41%
Steinberg-Guinan 483.91 GPa -4.41%

Preston-Tonks-Wallace 483.90 GPa -4.41%

FLAG results using constitutive models resulted in lower maximum pressures than
strengthless simulations, as expected.
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Verification: 3D
Normal Impact

5 km/s: 52.39 GPa, -10.79% 20 km/s: 555.74 GPa, 9.78%

Figure: 3D FLAG simulation results of Al-Al 20 km/s normal verification problem.

Oblique Impact

Figure ??: 3D FLAG simulation results of Al-Al 5 kms oblique verification problem.
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Verification: 3D

Figure: Pressure wave of FLAG simulation of Al-Al 5 km/s oblique verification problem 0.732070 seconds after impact.
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Mesh Resolution Study

Figure: (left) Shock pressure decay of Al-Al verification
problem with resolutions ranging from 5 to 40 cells per
projectile radius (cppr). FLAG appears to converge around
10 cppr in the 5 km/s impact and around 20 cppr in the 20
km/s impact.

Figure: (above) Computational times for mesh resolution
study of Al-Al verification problems. The time refers to the
number of seconds of simulation time needed for the
pressure wave to propagate 10 km into the target. 5 km/s
simulations used 108 processors, and 20 km/s simulations
used 144 processors.

FLAG provides meaningful results at reduced computational cost.Los Alamos National Laboratory 10/10/2019 | 15



Verification Summary

• 2D strengthless runs had errors between -2.69% and 1.46% at
point of impact

• 2D strengthless runs had lower errors than previously published
results when measuring pressure at the same location in the
target

• 3D normal and oblique impacts completed in approximately 6
hours

• 3D normal impacts had errors between -10.79% and 9.78%
using the coarsest tested resolution

• Mesh resolution study indicated computational time could be
reduced from 28 hours to 25 minutes for some impacts
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Validation

Time Experimental FLAG Relative Experimental FLAG Relative
(ms) Radius (cm) Radius (cm) Error Depth (cm) Depth (cm) Error
0.191 1.608 1.68713 4.92% 2.35 2.23934 -4.71%
0.382 2.297 2.20879 -3.84% 2.6 2.7669 6.42%
0.764 2.963 2.81574 -4.97% 3.32 3.44335 3.72%
1.146 3.423 3.30393 -3.48% 3.85 3.91973 1.81%
1.91 4.112 3.87845 -5.68% 4.61 4.57374 -0.79%

3.436 5.031 4.62491 -8.07% 5.39 5.52639 2.53%
5.72 6.064 5.12498 -15.49% 6.41 6.03864 5.79%

9.516 7.098 6.179 -12.95% 7.514 7.868 4.71%

Table: Experimental data and FLAG simulation results for glass-water validation problem. The average error from the codes
tested by Pierazzo et al.† was about -11% for crater radius and about -14% for crater depth. In comparison, FLAG had an
average error of about -6.2% for crater radius and about 2.44% for crater depth.

Crater dimensions from FLAG simulations had lower average errors than
previously published results using other hydrocodes.
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Validation
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Figure: Experimental data and FLAG simulation results of (a) crater radius and crater depth (b) over time.

FLAG simulation results match experimental data well in early time,
despite a resolution ranging from 0.2 to 5 cells per projectile radius
(cppr). FLAG simulations results in later time underestimate radius
and overestimate depth but still perform well compared to
previously published results.
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Conclusions

• FLAG can be used for impact cratering simulations
• FLAG simulations can provide meaningful results at reduced

computational cost
• FLAG can be used to model solid materials
• FLAG simulations match experimental data with average errors

lower than previously published results
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Asteroid 16 Psyche

• Largest M-type asteroid in Main Asteroid Belt
• Upcoming NASA mission Psyche: Journey to a Metal World
• Bulk density estimates: 1.4± 0.3− 4.5± 1.4 g/cm3, some as

high as 7.6 g/cm3

• Believed to be differentiated planet core
• Two large impact structures in Southern hemisphere

– 53± 15 km and 67± 15 km
diameter

– 6.4± 0.64 km depth

– Crater formation dominated by
strength rather than gravity

Image of Psyche with craters in blue. Image from
Shepard et al., “Radar observations and shape model of
asteroid 16 Psyche,” Icarus (2017).
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Larger Crater: 2D Axisymmetric Simulation
Setup

• Resolution ∼ 15 cells per projectile radius (cppr)
• ∼ 2.3 million zones
• 180 processors
• Materials: Fe, Ni, SiO2, Monel
• Psyche: semicircle, radius 125 km
• Impactor: semicircle, radius 5 km
• Void: (500 km × 500 km square)\ (Psyche

⋃
Impactor)
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Theoretical crater profiles and shape model data for comparison.
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Larger Crater: 2D Solid Results
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Larger Crater: 2D Target and Impactor Studies
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(Left) Target study with SiO2 impactor. (Right) Impactor study with Monel target.

Crater dimensions appear to scale roughly with yield strength in the
target study and density in the impactor study.
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Larger Crater: 2D Porosity Study
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(Left) Crater profiles from 2D porosity study. (Right) Asteroid disruption from simulation with solid iron impacting 80% porous
iron.
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Larger Crater: 2D Results Summary

Simulation of solid SiO2 impacting solid Monel, showing the overturned flap.

• Depth overestimation and diameter underestimation =⇒
oblique impact angle

• Porosity study =⇒ porosity likely around 30%–50%
• Impactor density and target yield stress key to crater formation
• 3D simulations are needed to vary impact angle.
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Larger Crater: Psyche 3D Simulation Setup

• 3D Cartesian
• Psyche: Shape model, spherical cap of radius 110 km
• Impactor: Sphere, 5 km radius
• Void: Void Box \ (Psyche & Impactor), 500 km x 500 km
• Zone size: 1000 m – 10000 m (5 cppr – 0.5 cppr)
• Zones: ∼ 33.4 million
• Proccesors: 1080

Video of Psyche simulation at initialization. Video credit: John Patchett; Shape model: Shepard et al., “Radar observations
and shape model of asteroid 16 Psyche,” Icarus (2017).
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Larger Crater: 3D Results
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(Left) Crater formation from solid Monel impacting 50% porous Monel 60◦ from vertical, about 40 seconds after impact.
(Right) Crater aspect ratios from 3D simulations, with shaded uncertainties.
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Larger Crater: 3D Profiles
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(Left) Crater profiles from 3D simulations with closest matches to diameter and depth, plotted alongside the pre-impact
simulation surface. (Right) Simulation profiles rotated to align with shape model for ease of comparison.
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Larger Crater: 3D Simulation Video

Simulation video of solid Monel impacting 50% porous Monel 60◦ from vertical. Video credit: John Patchett; Shape model:
Shepard et al., “Radar observations and shape model of asteroid 16 Psyche,” Icarus (2017).
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Smaller Crater: Preliminary Results

Rubble pile: hexagonal packing
Circle radius: 12.5 km
Macroporosity: 7.7%

Microporosity Bulk Density
0 % 8129.643 kg/m3

30 % 5690.750 kg/m3

40 % 4877.786 kg/m3

50 % 4064.822 kg/m3
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Smaller Crater: Preliminary Results

Rubble pile: square packing
Circle radius: 12.5 km
Macroporosity: 17.4%

Microporosity Bulk Density
0 % 7279.883 kg/m3

30 % 5095.918 kg/m3

40 % 4367.930 kg/m3

50 % 3639.942 kg/m3
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Smaller Crater: Preliminary Results
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Smaller Crater: Preliminary Results
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Smaller Crater: Preliminary Results
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Smaller Crater: Preliminary Results
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Smaller Crater: Forthcoming Work
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